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a. EVENT OVERVIEW



4

EVENT OVERVIEW

SPC 2000 UTC 20 May 2017 
Day 1 Categorical Convective 

Outlook

SPC 20 May 2017 Storm 
Reports 

20 May 2017 (ET) NWS 
Tornado & Severe 

Thunderstorm Warnings
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EVENT OVERVIEW 

KLOT Base Reflectivity Loop

20 UTC 20 May to
01 UTC 21 May

1. Highly localized outbreak 
of  “mini-supercells” and 
weak tornadoes in north-

central Indiana
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b. REANALYSIS METHODOLOGY
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Reanalysis Data

RAP model reanalysis used to represent the near-storm vertical 
environment as no near-by *representative* observations are available

a b
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c. ENVIRONMENT ANALYSIS

1. SYNOPTIC



11

MESOANALYSIS

12 UTC 20 May 2017 RAP

500 hPa Heights (black)

Absolute Vorticity (fill)

Wind (barbs)

Trough-of-interest axis (dash)

1. Large neutral-negatively-titled 
trough over the central & 
southern Plains

2. Several subtle shortwaves 
through ARLATX - Mississippi 
Valley
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MESOANALYSIS

23 UTC 20 May 2017 RAP

500 hPa Heights (black)

Absolute Vorticity (fill)

Wind (barbs)

Trough-of-interest axis (dash)

1. Trough closes off and ejects 
northeast into Northern 
Plains-Midwest

2. Subtle shortwaves move 
northward w/main trough, one 
centered just outside of case-
domain
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MESOANALYSIS

12 UTC 20 May 2017 RAP

850 hPa Heights (black)

Wind (fill)

Wind (barbs)

Trough-of-interest axis (dash)

1. Moderate low-level jet through 
IL (30-40kts)

2. Shortwaves swinging around 
main low centered over the 
Central Plains
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MESOANALYSIS

23 UTC 20 May 2017 RAP

850 hPa Heights (black)

Wind (fill)

Wind (barbs)

Trough-of-interest axis (dash)

1. Low level jet weakens but still 
exists in central-northern 
case-domain.

2. Subtle shortwave over central 
IL and western IN
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c. ENVIRONMENT ANALYSIS

2. THERMODYNAMIC & KINEMATIC 
ENVIRONMENT
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a b

Low level warming & moisture advection

Elevated instability 
above weakening cap

17 
UTC

20 
UTC
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b c

Low level warming & moisture advection

Ascent from approaching shortwave cools mid levels

Eroded capping = 
Nearly free convection

20 
UTC

23 
UTC
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d e
17 
UTC

20 
UTC

1-9km wind subtlety increase
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e f
20 
UTC

23 
UTC

5-9km winds increase, increasing Blk Shr

Highly favorable low-level kinematics
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RAP REANALYSIS 
FULL VERTICAL 

PROFILE

23 UTC 20 May 2017

KLAF – Lafayette, IN

1. Large Low-level 
instability

2. Moist low-mid levels

3. Moderate low-level 
horizontal vorticity 

4. Large low-level storm 
relative wind

5. Overall, highly favorable 
kinematics and 
thermodynamics for 
the right storm.
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c. ENVIRONMENT ANALYSIS

3. MESOSCALE ANALYSIS 
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MESOANALYSIS

23 UTC 20 May 2017 RAP

MSLP
10m Wind Barbs

2m Temperature (fill)
2m Dewpoint (dash)

1. Warm front draped across 
central Indiana.

2. Backed low-level flow
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MESOANALYSIS

23 UTC 20 May 2017 RAP

MSLP
10m Wind Barbs

2m Dewpoint (fill)

1. Warm front draped across 
central Indiana.

2. Low-level moisture transport
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MESOANALYSIS

23 UTC 20 May 2017 RAP

MSLP 
10m Wind Barbs 

Surface-Based CAPE (fill)

1. Low level diurnal heating and 
low-level moisture advection 
support large CAPE along 
warm front.
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MESOANALYSIS

23 UTC 20 May 2017 RAP

0-9km Hodographs 
0-500m Streamwiseness (fill)
0-500m Storm Relative Wind 

(contour)

1. Enlarged hodographs near the 
warm front

2. Large low-level 
streamwiseness 

3. Large low-level storm relative 
wind.
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0-1km 1-3km 3-6km 6-9km
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d. RADAR EVOLUTION
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17 UTC 20 May

a.

1. Pt. a: stratiform rain left 
behind by morning 
convection 
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18 UTC 20 May

a.
1. Pt. a: stratiform rain left 

behind by morning 
convection 
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19 UTC 20 May
a.

1. Pt. a: stratiform rain left 
behind by morning 
convection 

2. Clearing conditions 
behind departing rain 
heading into peak 
afternoon heating 
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20 UTC 20 May

1. Clear conditions during 
peak afternoon heating

2. VCP Change to 31 
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21 UTC 20 May

1. Pt. a: Subtle boundary 
draped from NNE to SSW 
across eastern IL & NW 
IN.

2. Clear conditions during 
peak afternoon heating 

3. Pt. b: first indications of 
CI attempts WSW of 
Indianapolis 

a.

b.
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21 UTC 20 May

1. Pt. a: Subtle boundary 
draped from NNE to SSW 
across eastern IL & NW 
IN.

2. Clear conditions during 
peak afternoon heating 

3. Pt. b: first indications of 
CI attempts WSW of 
Indianapolis 

a.

b.
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21:30 UTC 20 May

1. Pt. a: First indications of 
CI WSW of Indianapolis

2. Clear conditions during 
peak afternoon heating 

a.
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22 UTC 20 May

1. VCP change to 12

2. Pt. a: Two main discrete  
development areas with 
“open warm sector 
access” 

3. Pt. b: more linear, 
clustered convection 
along cold front.

4. Pt. c: Possibly favorable 
future rear-flank merger 
into northern supercell

a.

b.

c.
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22 UTC 20 May

1. VCP change to 12

2. Pt. a: Two main discrete  
development areas with 
“open warm sector 
access” 

3. Pt. b: more linear, 
clustered convection 
along cold front.

4. Pt. c: Possibly favorable 
future rear-flank merger 
into northern supercell

a.

b.

c.
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22:30 UTC 20 May

1. Pt. a: “main storms” 

2. Pt. b: more linear, 
clustered convection 
along cold front.

3. Pt. c: Possibly favorable 
rear-flank merger into 
northern supercell

a.

b.

c.
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23 UTC 20 May

1. Pt. a:  Two main 
supercells of interest

2. Pt. b: more linear, 
clustered convection 
along cold front.

3. Pt. c: Possibly favorable 
rear flank merger on 
northern supercell. Main 
cell briefly shrinks & 
becomes disorganized. 

4. Pt. d: left split from the 
southern supercell

d.

a.

c.

b.
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23:10 UTC 20 May

1. Pt. a: Two main 
supercells

2. Pt. c: Northern supercell 
ingests merging shower, 
begins to organize again

3. Pt.d: Left split from 
southern supercell

a.

d.

c.
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23:20 UTC 20 May

a.

d.

c.

1. Pt. a: Two main 
supercells

2. Pt. c: Merger is complete 
& the northern supercell 
is at its strongest point

3. Pt.d: Left split from 
southern supercell

23z Warm Front Location



OVERVIEW MODEL METHODOLOGY ENVIROMENT ANALYSIS RADAR EVOLUTION CONCLUSIONS REFERENCES
40

23:20 UTC 20 May

a.

d.
c.

1. Pt. a: Two main 
supercells

2. Pt. c: Merger is complete 
& the northern supercell 
is at its strongest point

3. Pt.d: Left split from 
southern supercell
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23:20 UTC 20 May

1. Far clearer supercell reflectivity structure 
2. Broad inflow (2.1km beam height)
3. Velocity suggests lower-level mesocyclone developing (inbound + outbound flow)
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23:25 UTC 20 May

1. Supercell begins rightward deviation (increasing SWV ingestion & SRW)
2. Broad increase in inflow velocity
3. More prominent mesocyclone signature (psbl RFD surge signature)
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23:30 UTC 20 May

1. Tornado #1 develops 
2. Tight couplet (2.1km beam height) 
3. Inflow velocities increase & become more centralized.
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23:33 UTC 20 May

1. Tornado #1 on the ground
2. Clear mesocyclone signature & tornadic couplet

FFD

RFD

UD

Psbl. BWER

INFLOW
RFD SURGE
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2km

Northern
Supercell

Southern
Cluster & 
Left Split

4km

KLOT

Radar beam distance 
above ground, weakness 

of tornado, lack of 
structural impacts 
resulted in no CC 

signature



46

e. CONCLUSIONS
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a. Subtle details were key

o Weak shortwave provided upper-level lift & 

adiabatic cooling of mid-level temperatures.

FORECASTER TAKEWAYS

o Cyclonic low-level flow via weak surface cyclone 

& a subtle warm front draped across the risk 

area provided favorable low-level kinematics

▪ Ample low-level horizonal vorticity

▪ High streamwiseness of horizontal vorticity

▪ Strong storm relative wind (reduced CAPE-

dilution via entrainment)

▪ Ample bulk shear

OVERVIEW MODEL METHODOLOGY ENVIROMENT ANALYSIS RADAR EVOLUTION CONCLUSIONS REFERENCES

o Afternoon heating & low-level cyclonic moisture 

advection provided destabilization.

▪ Warm, humid surface

▪ Strong low-level destabilization (0-3km CAPE)

▪ Moist profile limited CAPE-dilution via 

entrainment
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